Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Epidemics ; 2023.
Article in English | EuropePMC | ID: covidwho-2251893

ABSTRACT

Background: Contact tracing is one of the most effective non-pharmaceutical interventions in the COVID-19 pandemic. This study uses a multi-agent model to investigate the impact of four types of contact tracing strategies to prevent the spread of COVID-19. Methods: In order to analyse individual contact tracing in a reasonably realistic setup, we construct an agent-based model of a small municipality with about 60.000 inhabitants (nodes) and about 2.8 million social contacts (edges) in 30 different layers. Those layers reflect demographic, geographic, sociological and other patterns of the TTWA (Travel-to-work-area) Hodonín in Czechia. Various data sources such as census, land register, transport data or data reflecting the shopping behaviour, were employed to meet this purpose. On this multi-graph structure we run a modified SEIR model of the COVID-19 dynamics. The parameters of the model are calibrated on data from the outbreak in the Czech Republic in the period March to June 2020. The simplest type of contact tracing follows just the family, the second tracing version tracks the family and all the work contacts, the third type finds all contacts with the family, work contacts and friends (leisure activities). The last one is a complete (digital) tracing capable of recalling any and all contacts. We evaluate the performance of these contact tracing strategies in four different environments. First, we consider an environment without any contact restrictions (benchmark);second with strict contact restriction (replicating the stringent non-pharmaceutical interventions employed in Czechia in the spring 2020);third environment, where the measures were substantially relaxed, and, finally an environment with weak contact restrictions and superspreader events (replicating the situation in Czechia in the summer 2020). Findings: There are four main findings in our paper. 1. In general, local closures are more effective than any type of tracing. 2. In an environment with strict contact restrictions there are only small differences among the four contact tracing strategies. 3. In an environment with relaxed contact restrictions the effectiveness of the tracing strategies differs substantially. 4. In the presence of superspreader events only complete contact tracing can stop the epidemic. Interpretation: In situations, where many other non-pharmaceutical interventions are in place, the specific extent of contact tracing may not have a large influence on their effectiveness. In a more relaxed setting with few contact restrictions and larger events the effectiveness of contact tracing depends heavily on their extent.

2.
Epidemics ; 43: 100677, 2023 06.
Article in English | MEDLINE | ID: covidwho-2251894

ABSTRACT

BACKGROUND: Contact tracing is one of the most effective non-pharmaceutical interventions in the COVID-19 pandemic. This study uses a multi-agent model to investigate the impact of four types of contact tracing strategies to prevent the spread of COVID-19. METHODS: In order to analyse individual contact tracing in a reasonably realistic setup, we construct an agent-based model of a small municipality with about 60.000 inhabitants (nodes) and about 2.8 million social contacts (edges) in 30 different layers. Those layers reflect demographic, geographic, sociological and other patterns of the TTWA (Travel-to-work-area) Hodonín in Czechia. Various data sources such as census, land register, transport data or data reflecting the shopping behaviour, were employed to meet this purpose. On this multi-graph structure we run a modified SEIR model of the COVID-19 dynamics. The parameters of the model are calibrated on data from the outbreak in the Czech Republic in the period March to June 2020. The simplest type of contact tracing follows just the family, the second tracing version tracks the family and all the work contacts, the third type finds all contacts with the family, work contacts and friends (leisure activities). The last one is a complete (digital) tracing capable of recalling any and all contacts. We evaluate the performance of these contact tracing strategies in four different environments. First, we consider an environment without any contact restrictions (benchmark); second with strict contact restriction (replicating the stringent non-pharmaceutical interventions employed in Czechia in the spring 2020); third environment, where the measures were substantially relaxed, and, finally an environment with weak contact restrictions and superspreader events (replicating the situation in Czechia in the summer 2020). FINDINGS: There are four main findings in our paper. 1. In general, local closures are more effective than any type of tracing. 2. In an environment with strict contact restrictions there are only small differences among the four contact tracing strategies. 3. In an environment with relaxed contact restrictions the effectiveness of the tracing strategies differs substantially. 4. In the presence of superspreader events only complete contact tracing can stop the epidemic. INTERPRETATION: In situations, where many other non-pharmaceutical interventions are in place, the specific extent of contact tracing may not have a large influence on their effectiveness. In a more relaxed setting with few contact restrictions and larger events the effectiveness of contact tracing depends heavily on their extent.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Contact Tracing , Pandemics/prevention & control , SARS-CoV-2 , Disease Outbreaks/prevention & control
3.
Bull Math Biol ; 84(8): 75, 2022 06 20.
Article in English | MEDLINE | ID: covidwho-1899295

ABSTRACT

Running across the globe for nearly 2 years, the Covid-19 pandemic keeps demonstrating its strength. Despite a lot of understanding, uncertainty regarding the efficiency of interventions still persists. We developed an age-structured epidemic model parameterized with epidemiological and sociological data for the first Covid-19 wave in the Czech Republic and found that (1) starting the spring 2020 lockdown 4 days earlier might prevent half of the confirmed cases by the end of lockdown period, (2) personal protective measures such as face masks appear more effective than just a realized reduction in social contacts, (3) the strategy of sheltering just the elderly is not at all effective, and (4) leaving schools open is a risky strategy. Despite vaccination programs, evidence-based choice and timing of non-pharmaceutical interventions remains an effective weapon against the Covid-19 pandemic.


Subject(s)
COVID-19 , Masks , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , Czech Republic/epidemiology , Humans , Mathematical Concepts , Models, Biological , Pandemics/prevention & control , SARS-CoV-2 , Schools
4.
Sci Rep ; 12(1): 7638, 2022 05 10.
Article in English | MEDLINE | ID: covidwho-1830098

ABSTRACT

Following initial optimism regarding potentially rapid vaccination, delays and shortages in vaccine supplies occurred in many countries during spring 2021. Various strategies to counter this gloomy reality and speed up vaccination have been set forth, of which the most popular has been to delay the second vaccine dose for a longer period than originally recommended by the manufacturers. Controversy has surrounded this strategy, and overly simplistic models have been developed to shed light on this issue. Here we use three different epidemic models, all accounting for then actual COVID-19 epidemic in the Czech Republic, including the real vaccination rollout, to explore when delaying the second vaccine dose by another 3 weeks from 21 to 42 days is advantageous. Using COVID-19-related deaths as a quantity to compare various model scenarios, we find that the way of vaccine action at the beginning of the infection course (preventing infection and symptoms appearance), mild epidemic and sufficient vaccine supply rate call for the original inter-dose period of 21 days regardless of vaccine efficacy. On the contrary, for the vaccine action at the end of infection course (preventing severe symptoms and death), severe epidemic and low vaccine supply rate, the 42-day inter-dose period is preferable, at any plausible vaccine efficacy.


Subject(s)
COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL